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A Model of Turbulent Mixing in the 
A + B 0 Reaction 

Will iam D.  Deering I and Bruce J. West  1 

The diffusion limited reaction A + B ~ 0 in sufficiently low dimensions results in 
macroscopically self-regregated systems with anomalous reaction rate laws. 
When the chemical mixture is embedded in a fluctuating velocity field having 
statistics mimicking "turbulent diffusion" the effects of spatial inhomogeneities 
are washed out and the classical global reaction rate laws in three dimensions 
result. 

KEY WORDS: A + B ~ 0 ;  turbulent mixing. 

1. I N T R O D U C T I O N  

It has been over a decade since Zeldovich and co-workers (1~ pointed out 
that the diffusion-limited reaction A + B --, 0 in sufficiently low dimensions 
will result in macroscopically self-segregated systems with anomalous reac- 
tion rate laws. Since that time there has been an explosion of interest in this 
phenomenon, the vast majority of studies focusing on various microscopic 
mechanisms that might modify the originally deduced behavior, e.g., the 
effects of traps, (2) desorption (e.g., ref. 3), various reaction laws, (4) etc. On 
the other hand, there has been little or no attention paid to the possible 
modification of these predictions due to such effects as stirring or shaking 
the chemical mixture to create a turbulent flow field in which the reaction 
takes place. Herein we study the effect of a simple model of a fluctuating 
velocity field on the reaction rate law for the A + B - ,  0 reaction. 

Let us briefly review how one traditionally characterizes the behavior 
of the class of A +  B ~ 0  reactions by means of rate laws. If pi(r, t), 
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i -= A, B, is the position-dependent particle density, then in a volume V one 
constructs rate laws for the averaged quantity 

1 
I dr pi(r, t), ~i(t)~----g v 

such that 

i = A , B  (1.1) 

d•i d--[ (t)= F{pA, PB} (1.2) 

in the absence of time- and/or space-dependent sources. Thus, for the 
A + B--, 0 reaction the textbook global rate laws are 

~ ( t )  = -k~pA(t) pB(t) + Rib(t) (1.3) 

where kg is the global rate coefficient that is independent of time and of 
system size and Rig is the global source term. For diffusion-limited 
reactions the rate coefficient kg is proportional to the diffusion constant D. 
The standard form of the local rate laws is 

0 
pi(r, t) = D VZpi(r, t) - kipA(r , t) pB(r, t) + Ra(r, t) (1.4) 

where kl is the time-independent local rate coefficient and the global source 
term Rig(t) is related to the local source term Ril(r, t) by a volume integral. 
In principle, (1.3) is the volume integral of (1.4), but in practice the non- 
linear form of the reaction term makes it difficult to directly establish such 
a connection. (5) 

2. F L U C T U A T I N G  V E L O C I T Y  FIELD 

Let ni(r, t) denote the local particle density of species A or B at time 
t. Unlike species annihilate one another upon (suitably defined) contact, 

A + B ~ 0  (2.1) 

We express the particle density as a sum of delta functions 

N 

ni(r, t ) =  ~ 6 ( r - r i ( t ) )  (2.2) 
l = l  

where r~(t) is the location of t he / th  particle of type i at time t. The spatial 
Fourier transform 

hi(k, t ) = j  dr eikrni(r, t) (2.3) 
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has the inverse transform (with L a =  V= system volume) 

rti(r , t )=-~ ~k e i k ' r / T i ( k  , t) 

' 21re ~f d k e - ' k ' ~ ( k , t )  ~ (  ) (2.4) 

Thus, we can write 

1 N 
hi(r, t ) = ~ - ~  k ~ e x p { i k - [ r - - r i ( t ) ]  } 

/ = i  

(2.5) 

where the instantaneous position of the lth particle of type i is given by 

ri(t ) = r I + f] V(t') dt' (2.6) 

Here r I is the initial location of the /th particle and V(t) is the time- 
dependent velocity of the ambient fluid in which the chemical species i is 
embedded. In the absence of chemical reactions, molecular diffusion, and 
source terms, the time derivative of (2.5) using (2.6) yields 

0 
c~t ni(r' t) + V(t)-Vn/(r, t) = 0 (2.7) 

The spatially-independent velocity field acts to convect the chemical species. 
A microscopic description of the reaction system (2.1) would involve 

the description of the joint evolution of all the A and B particles present 
in the system (note that this number changes in time due to the reactions). 
This level of description is not only practically impossible, but is also 
unnecessarily detailed. A desirable mesoscopic level of description that 
yields both spatial and temporal information includes the evolution of the 
(suitably coarse-grained) local densities pA(r, t) and pB(r, t). Such local 
densities are first moments of the joint distribution function of all the 
particles, and it is unlikely that their evolution is expressible in terms of 
functionals of only these densities. In the present situation this includes an 
average over the velocity fluctuations. The evolution of the particle density 
including molecular diffusion and the velocity field above is 

0t n,(r, t) + V(t). Vni(r, t) = D VZn,(r, t) (2.8) 
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Indicating the average over the velocity distribution by an overbar, we 
define 

ni(r, t) 
pi(r, t )=  (2.9) 

N 

so that (2.8) yields 

1 
~t pi(r, t) + ~ V(t)-Vni(r, t) = D VZpi(r, t) (2.10) 

To evaluate the correlation function in (2.10), we must specify the statistics 
of the velocity field. 

Herein we concentrate on a statistical flow field because traditionally 
the models for turbulent fluid flow have emphasized the statistical 
character of the velocity field. (6) Even though the velocity field depicted in 
(2.8) does not have a spatial component, and therefore does not satisfy the 
Navier-Stokes equation, we wish to endow it with the statistical properties 
necessary to capture the essential features of "turbulent diffusion." 
Fully developed "homogeneous" turbulence involves spatial and temporal 
features covering many scales and no satisfactory description of its dynamic 
exists. However, it is well known that the diffusion of a passive scalar, such 
as smoke, dye, or a chemical, in a turbulent flow field leads to a mean 
square separation of two passive scalar particles initially close together that 
increase as the cube of time, i.e., ( R 2 ;  t )  ~ t3. (7) This rate of separation is 
vastly greater than molecular diffusion, which only increases linearly with 
time. 

We choose a model velocity field that mimics the effect of turbulent 
diffusion on the single-particle density function. Note that if we choose 
zero-centered Gaussian statistics for the model velocity field with the 
correlation function for the components of the velocity field ~8) 

Vm(t) Vn(t')=2a2mlt--t'16m, n; m , n = x , y , z  (2.11) 

then, using (2.5), we obtain 

V(t) .Vne(r, t )=  -3az t  2 VZni(r, t) (2.12) 

if a x = % = % = 2  2 2 a 2. Thus we can write (2.10) as 

pi(r, t) = K(t) VZpi(r, t) (2.13) 
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where the time-dependent diffusion coefficient is 

K(t) = D + 3azt 2 (2.14) 

We see from (2.14) that the "turbulent" part of the diffusion coefficient 
quickly dominates molecular diffusion due to its time dependence. ' 

Note that (2.13) has the form proposed by Batchelor ~9) for the relative 
diffusion between two particles, even though (2.13) is the evolution 
equation for the single-particle density. 

3. R E A C T I O N - D I F F U S I O N  EQUATION 

We now 
model velocity field discussed in the preceding section: 

63PA (r, f) = KA(/) VZpA(r, t) - F ( p A ,  PI3) 
c3t 

~P_~B (r, t) = KB(t) V2pB(r, t) -- F(pA, p , )  
~t 

write the reaction-diffusion equations incorporating the 

(3.1a) 

(3.1b) 

where the local reaction is described by the symmetric function 
F(pA, pB)=F(pB,  PA)" The form often taken for the reaction term is the 
product ~) 

F(pA, p~) = klpA(r, t) pu(r, t) (3.2) 

Herein we simply accept (3.1) and (3.2) as a phenomenological starting 
point of the analysis, leaving the remaining question about the validity of 
the model on microscopic and hydrodynamic grounds for the future. We 
need not specify the diffusion coefficients for the A and B particles, since 
they are both dominated by turbulent diffusion and Ki(t) is essentially 
given by 3~r-~t 2. 

Further analysis is facilitated if instead of (3.1) we work with the sum 
and difference variables ~ 4 )  

7(r, t)--- i r ~[-PA( , t ) -  pB(r, t)] (3.3a) 

p(r, t) -- I r ~[PA( , t) + pB(r, t)] (3.3b) 

The advantage of these new variables is that the equation satisfied by the 
difference variable is linear and independent of the chemical reaction: 

c3~ (r, t) = K(t) V27(r, t) (3.4) 
~t 

O_tip (r, t) = K(t) V2p(r, t) - kt[p2(r, t) - 3,2(r, t)] 
c3t 

(3.5) 
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The linear diffusion equation (3.4) is easily solved exactly. In particular, 
our analysis requires knowledge of the quantities ( v ( r , t ) )  and 
(7(r, t)v(r',  t ' ) ) , w h e r e  the brackets denote an ensemble average either 
over the initial spatial distribution of the particles or on the statistics of the 
particle source terms when they are present. 

The nonlinear equations (3.5) cannot be solved explicitly, but we are 
able to extract information about the long-time behavior of the averages 
(p(r, t ) )  and (p2(r, t)).  Since the initial conditions that we consider are 
spatially invariant on the average, i.e., (pA(r, 0))  are independent of r, the 
averages (p(r, t ) )  and (p2(r, t ) )  are also independent of r. This mean~ 
that (p(r, t ) )  is the global density p(t) and we can thus determine its 
asymptotic time evolution and the global rate law it implies. 

3.1. S O L U T I O N  IN d D I M E N S I O N S  W I T H  NO S O U R C E S  

The solution to the linear diffusion equation for the difference variable 
is given by 

~(r, t)=-~ ~k eik'r~(k, t) (3.6) 

where, neglecting molecular diffusion, 

'7(k, t) = ~(k, 0)e --~2k2'3 (3.7) 

The initial condition for the difference variable is 

1 N 
7(r,t=O)=~ ~= [6(r-rf ) -6(r-r~)3  (3.8) 

with the Fourier transform 

1 N 
~(k, t = 0) = ~ ~ [exp(ik" r~) - exp(ik �9 r~)] (3.9) 

l = 1  

Since we only require the first two moments of the difference variable, we 
need not determine the entire distribution for the initial state. 

To calculate the average (7(r, t ) )  over the initial distribution of 
particles, we note that their random placement implies that 

(exp(ik" r~) )  = (exp(ik- r~))  = ~k,o (3.10) 

So that (~(k, 0 ) ) = 0  and consequently (~(k, t)) and (7(r, t ) )  also vanish 
for all time, reflecting the fact that if the number of A's and B's are equal 
initially, they remain so for all time. 
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To calculate the d-dimension 7-correlation function 

C~d~(r-r ', t )=  (y(r, t)7(r' ,  t ) )  

we use (3.6) and (3.7) to write 

(3.11) 

1 
C~a)( r - r  ', t) = ~ T ~  ~ (]3(k, 0)~(k', 0 ) ) e  (~2+~'2)'~2t3 

k k' 

x e - - i ( k r + k " r ' )  (3.12) 

The second moment in (3.12) is 

N 
(~(k, 0) ~7(k', 0)~ = ~  ~Sk+k, o (3.13) 

when the two species are mutually uncorrelated in the initial state. 
Substituting (3.13) into (3.12) and using P o -  N / V  yields in d dimensions 

[ 0  - (r r')2/8~2t 3 
Cr - r', t) = 2(Srco.2t3)d/2 e (3.14) 

Thus the mean square value of the difference variable decays in time as 
t 3d/2: 

po (3.15) (72(r, t) ) - 2(87ta2t3)a/2 

This time dependence is quite different than the t -a/2 obtained by a number 
of other authors (~4'~5~ for diffusion-dominated systems in the absence of the 
velocity field. 

Let us now examine the behavior of the sum variable in (3.5). 
Consider the average of (3.5) over the initial distribution of A's and B's: 

0 
0t (p(r,  t ) ) = K ( t ) V 2 ( p ( r ,  t ) ) - k z [ ( p 2 ( r ,  t ) )  - (72(r, t ) ) ]  (3.16) 

Although we cannot solve (3.16) exactly, we can infer the leading time 
dependence of the averages34'! 1'14) To do so, we assume that the leading 
time contribution to ( p 2 )  is the square of the leading contribution to ( p ) .  
The diffusion term vanishes, since our initial conditions assume that ( p )  
is independent of the absolute position r. Thus, 

( p ) ~ t  ~, ( p 2 ) ~  t 2~, _ ( p ) ~ t - ~  1 (3.17) 
Ot 

822/65/'5-6-27 
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Schematically we can then write (3.16) as 

t - ~ -  1 ~ t - - 2 c ~  _ _  t 2u (3.18) 

where # is known from our earlier calculation to be 3d/4, and the diffusion 
term vanishes due to the spatial independence of (p(r, t)). 

If # is smaller than unity, then the only way to balance the leading 
time dependence in (3.18) is to have e = # .  If, on the other hand, # >  1, 
then a balance is achieved by choosing e + 1 = 2c~, i.e., c~ = 1. The former 
case leads to anomalous (slow) decay of the global density, while the latter 
is the classical textbook case. 

For uncorrelated initial conditions we found in (3.15) that /~=3d/4 
and hence for d ~< 4/3 we set ~ = 3d/4, while for d > 4/3 we have ~ = 1: 

( t -  3a/4 
( p ( r , t ) ) = p ( t ) ~ t _ l ,  ' d<~4/3 

d > 4 / 3  (3.19) 

In this way we see that an anomolous reaction rate occurs in one dimen- 
sion even with mixing present, but not for d i> 4/3. 

3.2. SOLUTION IN d - D I M E N S I O N A L  V O L U M E S  
WITH SOURCES 

We include sources for the chemical species in our discussion 
modifying (3.4) and (3.5) in the following way: 

0.ff_~ (r, t) = K(t) V27(r, t) + r/~(r, t) 
0t 

~3p (r, t) = K(t) V2p(r, t) - k, I-p2(r, t) - 72(r, t)] + r/p(r, t) 
Ot 

by 

3.20a) 

(3.20b) 

where the random source terms % and t/o are defined in analogy with (3,3) 
as sum and difference variables.. The average number of A and B molecules 
is kept equal at all times, i.e., 

J ~ dr pA(r, 0 )=  f dr pn(r, 0) (3.21a) 

so that 

at all times. 

I dr (r/A(r, t)) = f  dr QIB(r, t ) )  (3.21b) 

f dr (~(r, t ) ) =  f dr (~/7(r, t ) ) =  0 (3.22) 



Turbulent Mixing in A +  B-*O Reaction 1255 

As in the preceding section, we wish to evaluate the first and second 
moments of 7(r, t), but in the case when there are no A and B particles 
present in the fluid initially and the source terms are stochastic. Therefore, 
to calculate these moments, we must specify the statistical properties of the 
sources; in particular, because of the linearity of (3.20a), we need only 
specify the first and second moments <q~.(r, t ) )  and <r/~(r, t)q~(r', t ' )) .  We 
consider only sources that are spatially invariant on the average' so that 
(~(r, t ) )  is independent of r and hence is the global difference variable ~'(t), 
and (7(r, t)7(r', t ' ) )  depends only on the differences r - r '  and t - t ' .  

We restrict our discussion here to strictly conservative sources, i.e., at 
all times the number of A's deposited in the fluid is exactly equal to the 
number of B's deposited, albeit at random locations whose distribution 
must still be specified. We envision the deposition process as follows: A (or 
B) particles are deposited from a source at a point at the rate of one 
particle per unit time v, after which that particular source is turned off (or 
moved elsewhere). At time t, NA(/) A particles per unit time are being 
deposited in this way in the entire system, so that the deposition rate of A's 
per unit volume at time t is r/a(t)=NA(t)/L a. For strictly conservative 
sources, (r/A(/))= (r/B(t)) at all times, so that (r/./(t))=O. 

Let us now consider the difference variable. Fourier-tr~insforming 
(3.20a) and integrating the transformed equation over time subject to the 
initial condition 7(r, t = 0) = r t = 0) = 0 gives 

r t)= fo dt'e ~2k2(,3_ c3)#.e(k ' t') (3.23) 

For strictly conservative sources 

(#~(k, t) ) = 0 (3.24) 

and hence 

(f(k,  t ) ) = 0  (3.25) 

i.e., the system contains an equal number of A and B particles at all times. 
To evaluate the correlation function <7(r, t) 7(r', t ' ) ) ,  we note from (3.23) 
that 

<~(k, t) f(k', r)> 
t t '  

=fo dtl fo dt2exp[-a2k2(t3-t~)] exp[-~ 

x <r/y(k, tl)r/7(k', t=)> (3.26) 
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where the source correlation function is yet to be specified. For 
uncorrelated particles in the source we obtain (4) 

(~y(k, tl) ~y(k', t2)) = 2RLa&k +w,o a(tl - t2) (3.27) 

where R is the time-independent deposition rate for both chemical species. 
Thus we may write 

f2 (37(k, t) ~(k', t ) )  = 2RLd•k+k,,O dt' e -2'r2k=(t3- t'3) (3.28) 

and we obtain for the 7-correlation function in d dimensions [cf. (3.11)] 

c~d) ( r_r t  t ) :  TR ~ c i k - ( ,  r ' ) ~ O  dtte-2d2k2(t3-, '3) (3.29) 
L k#0 

We replace the k sum in (3.29) with an integral over wave vectors 

so that 

L kZo (2 l f (3.30t 

R t 

where X = r - r' .  

The 7-correlation function is evaluated by first doing the k integration 
in each dimension and then explicitly carrying out the time integration. 
This is done explicitly in the Appendix, where Cr a) is expressed in terms of 
Kummer functions. In Fig. 1 we depict scaled forms of the correlation 

't# 69 (a) ."}b) I ~"" 

08 

~o, 
~o I~/' 
~06- 

05 
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03 

Fig. 1. 

2 3 4 5 6 7 8 9 10 20 
~irne (Dimensionless) 

The scaled V-correlation functions C~ a) as a function of the dimensionless time z: 
(a) vC~ 1) (---), (b) z2Cr ~ (.. .),  and (c) T2C~ 3) ( - - ) .  
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functions as a function of the dimensionless "time" variable T = (8ffa/r2)l/3t 
and r is the appropriate distance variable in one, two, and three dimen- 
sions. From the figure we see that ~ C~1)--. const as z becomes large, 
indicating an asymptotic time dependence of C~1)~ t -U2. This decay is in 
marked distinction to the situation when mixing is not present, in which 
case (72)  ~ tl/2. 

Again balancing the terms in the reaction-diffusion equation to 
estimate the time dependence of the sum variable, we have with the 
additional effect of the source term 

t - ~  1 ,.~ t-2= _ 1-2~ + to (3.32) 

where -2kt  is the exponent of the time in (7 2) and is in this case equal 
to - 1/2. It is clear that we must then have ~ = 1/4: 

( p ( r , t ) ) = p ( t ) ~ t  l/4, d = l  (3.33) 

We can also see from Fig. 1 that "r2Cr r ~ const with increasing ~. 
The asymptotic time dependence of C~ 2~ is therefore In t / t  2 and the average 
concentration has 

p( t )  ~ (ln t)l/2/t, d =  2 (3.34) 

as its time dependence. Again the average concentration decays, unlike the 
case without the random mixing, where p ( t ) ~  (ln t) 1/2. 

Finally we see from Fig. 1 that in three dimensions the scaled correla- 
tion function _2p(31 ~ ~ const as r ~ oe. Therefore C~ 3) has the asymptotic 
time dependence t -2 and the sum concentration has the classical time 
dependence 

p( t )  ~ t 1, d~> 3 (3.35) 

Note that the unmixed case had a constant for the average concentration 
in three dimensions. 

4. S U M M A R Y  

Herein we have studied a model in which a spatially independent 
stochastic model of a velocity field was introduced as a mixing mechanism 
for the A + B ~ 0 chemical reaction. The statistics of the velocity field was 
chosen to mimic turbulent diffusion and resulted in an enhanced rate of 
chemical reaction. In the case of no sources and a random distribution of 
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an equal number of A's and B's in the initial state the global reaction rate 
was found to be [cf. (3.19)] 

dp ( t)  ,~ _p(3d+4)/3d d ~  4/3 
dt 

..~ _p2, d ~> 4/3 (4.1) 

Unlike results obtained earlier, we see that the effect of "turbulent mixing" 
is to suppress chemical segregation for d~>4/3, in which case the global 
rate law is the classical one. 

The situation is again different when the chemical species are 
continuously fed into the system at random locations. The global rate laws 
a r e  

( _ p4/5, d = 1 

dd(tt ) ~ t F ( p , t ), d = 2  
~ _ p 2 ,  d>~3 

(4.2) 

where the form of F(p, t) obtained from (3.34) is not particularly in- 
formative except insofar as it is not of the classical form. Of most interest 
is the result for d ~> 3, which states that the classical global reaction rate is 
the appropriate description of the A + B--* 0 reaction in the presence of 
turbulent mixing. 

Thus, the model for turbulent mixing used here washes out the effects 
of spatial inhomogeneities in the reaction-diffusion equations and gives rise 
to the classical global reaction rate laws in three dimensions. 

APPENDIX.  EVALUATION OF CORRELATION FUNCTION 

The correlation function can also be written as 

c d)(x, Ad(X;t; C)dC (A1) 

where 

t') =_ f dk  e ik'x-k:": (A2) Ad(X; t, 

and we have found it convenient top introduce the distance parameter 

a 2 ~ 2 6 2 ( t  3 - -  t ' 3 )  (A3) 



Turbulent Mixing in A +  B - , 0  Reaction 1259 

The properties of the correlation function in one, two, and three dimen- 
sions can be determined from those of A l: 

A~(X; t, t') = e~kXe -~k2 dk (A4) 
oo 

which integrates to 

A~(x;t,t')=[Za2(tV_t,3)j exp (A5) 

Thus in one dimension the correlation function (A1) is 

C(~,(X t) R f~ dt' { A v2 } 
, , 2(27~a2)1/2 (t 3 _ t,3)i/2 exp 8a2(- ~ -  t,3) (A6) 

which in terms of the scaled variable (t ~> 0) 

t 3 
- ( A 7 )  q t 3_  t,3 

can be written 

C~l~(x, t)=6(222t ) f~ e-~ dtl 1/2 )2/3 1 t/5/6(t/- 1 

where in terms of the Kummer  function U 

ColI (X, t) 6(2rco.2t),/2 \ 3 ] e  ' 

(AS) 

(A9) 

A2(X, Y; t, t')= f~-o~ dkx f 2  dkyexp(ikxX-a2k2) exp(ikyY-a2k~) 

= AI(X; t, t')AI(Y; t, t') (A10) 

where X =  x - x '  and Y = y - y ' ;  so that A 2 is the direct two-dimensional 
Gaussian with a dispersion growing cubically in time. The two-dimensional 
correlation function is 

Cr Y, t)= R fo. e -~"d~ ( A l l )  
2~0"2t 2 1 ~11/3(q- 1) 2/3 

with ~ = X2/8cr2t 3. 
In a similar way we may evaluate the appropriate integrals for the 

two-dimensional case: 
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where  fl = ( X  2 + Y2)/8~rz13, so tha t  

R (2) C~. (X, II, t) - 
24rca2t 2 

(A12)  

F ina l ly ,  we can  wr i te  

R F ( I / 3 )  e ' (1  3 ) 
C~3)(X, Y, Z,  t) : 3o_2(8rt)3/2 tT/~ U 3'  2 '  ~ (A13)  

whe re  7 = ( X2 + y2 + Z2)/8~2t 3. 
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